使用 OpenAI Evals 入门

注意:OpenAI 现在提供了一个托管的 Evals 产品,并带有 API!我们建议您改用它。 请参阅 Evals

OpenAI Evals 框架包含:

  1. 用于评估 LLM(大型语言模型)或基于 LLM 构建的系统的框架。
  2. 一个开放源代码的具有挑战性的 Evals 注册表。

本笔记本将涵盖:

什么是评估/evals

评估是验证和测试 LLM 应用程序所生成输出的过程。拥有强大的评估(“evals”)意味着更稳定、可靠的应用程序,能够抵御代码和模型的更改。Eval 是一项用于衡量 LLM 或 LLM 系统输出质量的任务。给定一个输入提示,会生成一个输出。我们使用一组理想的答案来评估此输出,并找出 LLM 系统的质量。

评估的重要性

如果您正在使用 GPT-4 等基础模型进行构建,创建高质量的 Evals 是您可以做的最有影响力的工作之一。开发 AI 解决方案涉及迭代设计过程。没有 Evals,很难且耗时地理解 不同模型版本和提示如何影响您的用例。

借助 OpenAI 的 持续模型升级,Evals 使您能够以标准化的方式有效测试模型在您的用例中的性能。开发一套针对您的目标定制的 Evals 将帮助您快速有效地了解新模型在您的用例中的表现。您还可以将 Evals 作为 CI/CD 管道的一部分,以确保在部署前达到所需的准确性。

Evals 类型

我们可以通过两种主要方式评估/评分完成情况:编写一些代码中的验证逻辑,或者使用模型本身来检查答案。我们将通过一些示例来介绍每种方法。

编写答案检查逻辑

最简单、最常见的 Eval 类型是有一个输入和一个理想的响应或答案。例如,我们可以有一个 Eval 样本,其中输入是“奥巴马是哪一年首次当选总统的?”,理想答案是“2008”。我们将输入提供给模型并获得完成情况。如果模型说“2008”,则被评为正确。我们可以编写一个字符串匹配来检查完成情况是否包含“2008”一词。如果包含,则认为它是正确的。

考虑另一个 Eval,其输入是生成有效的 JSON:我们可以编写一些代码来尝试将完成情况解析为 JSON,然后在完成情况可解析时将其视为正确。

模型评分:一个两阶段过程,模型首先回答问题,然后我们要求模型查看响应以检查其是否正确。

考虑一个要求模型写一个搞笑笑话的输入。然后模型生成一个完成情况。然后我们创建一个新的输入给模型来回答问题:“这个笑话好笑吗?请先逐步推理,然后回答是或否”,其中包含完成情况。最后,如果原始模型的完成情况以“是”结尾,则认为原始完成情况正确。

模型评分最适合 GPT-4 等最新、最强大的模型,并且如果我们赋予它们推理能力后再做判断。模型评分会有错误率,因此在大规模运行 Evals 之前,通过人工评估来验证性能很重要。为获得最佳结果,最好使用与完成情况不同的模型进行评分,例如使用 GPT-4 来评分 GPT-3.5 的答案。

OpenAI Eval 模板

在使用 Evals 时,我们发现了一些可以适应许多不同基准的“模板”。我们在 OpenAI Evals 库中实现了这些模板,以简化新 Evals 的开发。例如,我们定义了两种可以开箱即用的 Eval 模板:

  • 基本 Eval 模板:这些模板包含确定性函数,用于将输出与理想答案进行比较。在期望的模型响应变化很小的情况下,例如回答多项选择题或具有简单答案的简单问题,我们发现以下模板很有用。

  • 模型评分模板:这些模板包含函数,其中 LLM 将输出与理想答案进行比较,并尝试判断准确性。在期望的模型响应可能包含显著变化的情况下,例如回答开放式问题,我们发现使用模型自行评分是自动评估的可行策略。

设置

首先,请访问 github.com/openai/evals,使用 git clone git@github.com:openai/evals.git 克隆存储库,并按照 设置说明 进行操作。

要在笔记本的后续部分运行 Evals,您需要设置并指定您的 OpenAI API 密钥。获取 API 密钥后,请使用 OPENAI_API_KEY 环境变量进行指定。

运行 Evals 时,请注意与使用 API 相关的成本。

from openai import OpenAI
import pandas as pd

client = OpenAI()

为 OpenAI Evals 框架构建评估

核心上,Eval 是一个数据集和一个在 YAML 文件中定义的 Eval 类。要开始创建 Eval,我们需要:

  1. jsonl 格式的测试数据集。
  2. 要使用的 Eval 模板。

创建 Eval 数据集

让我们为评估模型生成语法正确的 SQL 的能力创建一个数据集。在此用例中,我们有一系列与汽车制造相关的表。

首先,我们需要创建一个要评估的系统提示。我们将为模型传递说明以及表结构的概述:

"TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]"

对于此提示,我们可以问一个具体问题:

"Q: how many car makers are their in germany?"

我们有一个预期的答案:

"A: SELECT count ( * )  FROM CAR_MAKERS AS T1 JOIN COUNTRIES AS T2 ON T1.Country   =   T2.CountryId WHERE T2.CountryName   =   'germany'"

数据集需要遵循以下格式:

"input": [{"role": "system", "content": "<input prompt>"}, {"role": "user", "content": <user input>}, "ideal": "correct answer"]

将所有内容放在一起,我们得到:

{"input": [{"role": "system", "content": "TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]\n"}, {"role": "system", "content": "Q: how many car makers are their in germany"}, "ideal": ["A: SELECT count ( * )  FROM CAR_MAKERS AS T1 JOIN COUNTRIES AS T2 ON T1.Country   =   T2.CountryId WHERE T2.CountryName   =   'germany'"]}

加快构建 Eval 数据集的过程的一种方法是使用 GPT-4 生成合成数据。

## 使用 GPT-4 生成合成数据
# 定义系统提示和用户输入(应根据具体用例填写这些内容)
system_prompt = """You are a helpful assistant that can ask questions about a database table and write SQL queries to answer the question.
    A user will pass in a table schema and your job is to return a question answer pairing. The question should relevant to the schema of the table,
    and you can speculate on its contents. You will then have to generate a SQL query to answer the question. Below are some examples of what this should look like.

    Example 1
    ```````````
    User input: Table museum, columns = [*,Museum_ID,Name,Num_of_Staff,Open_Year]\nTable visit, columns = [*,Museum_ID,visitor_ID,Num_of_Ticket,Total_spent]\nTable visitor, columns = [*,ID,Name,Level_of_membership,Age]\nForeign_keys = [visit.visitor_ID = visitor.ID,visit.Museum_ID = museum.Museum_ID]\n
    Assistant Response:
    Q: How many visitors have visited the museum with the most staff?
    A: SELECT count ( * )  FROM VISIT AS T1 JOIN MUSEUM AS T2 ON T1.Museum_ID   =   T2.Museum_ID WHERE T2.Num_of_Staff   =   ( SELECT max ( Num_of_Staff )  FROM MUSEUM ) 
    ```````````

    Example 2
    ```````````
    User input: Table museum, columns = [*,Museum_ID,Name,Num_of_Staff,Open_Year]\nTable visit, columns = [*,Museum_ID,visitor_ID,Num_of_Ticket,Total_spent]\nTable visitor, columns = [*,ID,Name,Level_of_membership,Age]\nForeign_keys = [visit.visitor_ID = visitor.ID,visit.Museum_ID = museum.Museum_ID]\n
    Assistant Response:
    Q: What are the names who have a membership level higher than 4?
    A: SELECT Name   FROM VISITOR AS T1 WHERE T1.Level_of_membership   >   4 
    ```````````

    Example 3
    ```````````
    User input: Table museum, columns = [*,Museum_ID,Name,Num_of_Staff,Open_Year]\nTable visit, columns = [*,Museum_ID,visitor_ID,Num_of_Ticket,Total_spent]\nTable visitor, columns = [*,ID,Name,Level_of_membership,Age]\nForeign_keys = [visit.visitor_ID = visitor.ID,visit.Museum_ID = museum.Museum_ID]\n
    Assistant Response:
    Q: How many tickets of customer id 5?
    A: SELECT count ( * )  FROM VISIT AS T1 JOIN VISITOR AS T2 ON T1.visitor_ID   =   T2.ID WHERE T2.ID   =   5 
    ```````````
    """

user_input = "Table car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]"

messages = [{
        "role": "system",
        "content": system_prompt
    },
    {
        "role": "user",
        "content": user_input
    }
]

completion = client.chat.completions.create(
    model="gpt-4-turbo-preview",
    messages=messages,
    temperature=0.7,
    n=5
)

for choice in completion.choices:
    print(choice.message.content + "\n")
Q: What is the average horsepower for cars made in Europe?
A: SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN model_list ON car_names.Model = model_list.Model JOIN car_makers ON model_list.Maker = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId JOIN continents ON countries.Continent = continents.ContId WHERE continents.Continent = 'Europe'

Q: What is the average horsepower for cars made in the USA?
A: SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN car_makers ON car_names.MakeId = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId WHERE countries.CountryName = 'USA'

Q: What is the average horsepower for cars produced in countries from the continent with the id '3'?
A: SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN model_list ON car_names.Model = model_list.Model JOIN car_makers ON model_list.Maker = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId JOIN continents ON countries.Continent = continents.ContId WHERE continents.ContId = '3'

Q: What is the average horsepower for cars made by makers from Europe?
A: SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN model_list ON car_names.Model = model_list.Model JOIN car_makers ON model_list.Maker = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId JOIN continents ON countries.Continent = continents.ContId WHERE continents.Continent = 'Europe'

Q: What is the average horsepower for cars made in the USA?

A: SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN car_makers ON car_names.MakeId = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId WHERE countries.CountryName = 'USA'

一旦我们有了合成数据,我们就需要将其转换为匹配 Eval 数据集的格式。

eval_data = []
input_prompt = "TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]"

for choice in completion.choices:
    question = choice.message.content.split("Q: ")[1].split("\n")[0]  # 提取问题
    answer = choice.message.content.split("\nA: ")[1].split("\n")[0]  # 提取答案
    eval_data.append({
        "input": [
            {"role": "system", "content": input_prompt},
            {"role": "user", "content": question},
        ],
        "ideal": answer
    })

for item in eval_data:
    print(item)
{'input': [{'role': 'system', 'content': 'TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]'}, {'role': 'user', 'content': 'What is the average horsepower for cars made in Europe?'}], 'ideal': "SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN model_list ON car_names.Model = model_list.Model JOIN car_makers ON model_list.Maker = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId JOIN continents ON countries.Continent = continents.ContId WHERE continents.Continent = 'Europe'"}
{'input': [{'role': 'system', 'content': 'TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]'}, {'role': 'user', 'content': 'What is the average horsepower for cars made in the USA?'}], 'ideal': "SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN car_makers ON car_names.MakeId = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId WHERE countries.CountryName = 'USA'"}
{'input': [{'role': 'system', 'content': 'TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]'}, {'role': 'user', 'content': "What is the average horsepower for cars produced in countries from the continent with the id '3'?"}], 'ideal': "SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN model_list ON car_names.Model = model_list.Model JOIN car_makers ON model_list.Maker = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId JOIN continents ON countries.Continent = continents.ContId WHERE continents.ContId = '3'"}
{'input': [{'role': 'system', 'content': 'TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]'}, {'role': 'user', 'content': 'What is the average horsepower for cars made by makers from Europe?'}], 'ideal': "SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN model_list ON car_names.Model = model_list.Model JOIN car_makers ON model_list.Maker = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId JOIN continents ON countries.Continent = continents.ContId WHERE continents.Continent = 'Europe'"}
{'input': [{'role': 'system', 'content': 'TASK: Answer the following question with syntactically correct SQLite SQL. The SQL should be correct and be in context of the previous question-answer pairs.\nTable car_makers, columns = [*,Id,Maker,FullName,Country]\nTable car_names, columns = [*,MakeId,Model,Make]\nTable cars_data, columns = [*,Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year]\nTable continents, columns = [*,ContId,Continent]\nTable countries, columns = [*,CountryId,CountryName,Continent]\nTable model_list, columns = [*,ModelId,Maker,Model]\nForeign_keys = [countries.Continent = continents.ContId,car_makers.Country = countries.CountryId,model_list.Maker = car_makers.Id,car_names.Model = model_list.Model,cars_data.Id = car_names.MakeId]'}, {'role': 'user', 'content': 'What is the average horsepower for cars made in the USA?'}], 'ideal': "SELECT AVG(cars_data.Horsepower) FROM cars_data JOIN car_names ON cars_data.Id = car_names.MakeId JOIN car_makers ON car_names.MakeId = car_makers.Id JOIN countries ON car_makers.Country = countries.CountryId WHERE countries.CountryName = 'USA'"}

接下来,我们需要创建 Eval 注册表来在框架中运行它。

Eval 框架需要一个 .yaml 文件,该文件具有以下属性结构:

  • id - 您的 Eval 的标识符
  • description - 对您的 Eval 的简短描述
  • disclaimer - 关于您的 Eval 的附加说明
  • metrics - 我们可以从三种 Eval 指标中进行选择:match、includes、fuzzyMatch

对于我们的 Eval,我们将配置以下内容:

"""
spider-sql:
  id: spider-sql.dev.v0
  metrics: [accuracy]
  description: Eval that scores SQL code from 194 examples in the Spider Text-to-SQL test dataset. The problems are selected by taking the first 10 problems for each database that appears in the test set.
    Yu, Tao, et al. \"Spider; A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task.\" Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, https://doi.org/10.18653/v1/d18-1425.
  disclaimer: Problems are solved zero-shot with no prompting other than the schema; performance may improve with training examples, fine tuning, or a different schema format. Evaluation is currently done through model-grading, where SQL code is not actually executed; the model may judge correct SQL to be incorrect, or vice-versa.
spider-sql.dev.v0:
  class: evals.elsuite.modelgraded.classify:ModelBasedClassify
  args:
    samples_jsonl: sql/spider_sql.jsonl
    eval_type: cot_classify
    modelgraded_spec: sql
  """""
'\nspider-sql:\n  id: spider-sql.dev.v0\n  metrics: [accuracy]\n  description: Eval that scores SQL code from 194 examples in the Spider Text-to-SQL test dataset. The problems are selected by taking the first 10 problems for each database that appears in the test set.\n    Yu, Tao, et al. "Spider; A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task." Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, https://doi.org/10.18653/v1/d18-1425.\n  disclaimer: Problems are solved zero-shot with no prompting other than the schema; performance may improve with training examples, fine tuning, or a different schema format. Evaluation is currently done through model-grading, where SQL code is not actually executed; the model may judge correct SQL to be incorrect, or vice-versa.\nspider-sql.dev.v0:\n  class: evals.elsuite.modelgraded.classify:ModelBasedClassify\n  args:\n    samples_jsonl: sql/spider_sql.jsonl\n    eval_type: cot_classify\n    modelgraded_spec: sql\n  '

运行评估

我们可以使用 oaieval CLI 来运行此 Eval。要进行设置,请安装库:pip install .(如果您在本地运行 OpenAI Evals 库)或 pip install oaieval(如果您正在运行现有的 Eval)。

然后,使用 CLI 运行 Eval:oaieval gpt-3.5-turbo spider-sql

此命令需要一个模型名称和一个 Eval 集名称。请注意,我们提供了两个命令行界面(CLI):oaieval 用于运行单个 Eval,oaievalset 用于运行一组 Eval。有效的 Eval 名称在 evals/registry/evals 下的 YAML 文件中指定,其对应的实现可以在 evals/elsuite 中找到。

!pip install evals --quiet

oaieval CLI 可以接受各种标志来修改默认行为。您可以运行 oaieval --help 来查看完整的 CLI 选项列表。

运行该命令后,您将在控制台中看到准确性的最终报告,以及一个包含完整报告的临时文件的文件路径。

oaieval 将在 evals/registry/evals 目录中搜索 spider-sql Eval YAML 文件,遵循上面单元格 4 中指定的格式。Eval 数据集的路径在 Eval YAML 文件中 args 参数下的 samples_jsonl: sql/spider_sql.jsonl 指定,文件内容为 JSONL 格式(如第 3 步中生成的)。

运行该命令后,您将在控制台中看到准确性的最终报告,以及一个包含完整报告的临时文件的文件路径。

!oaieval gpt-3.5-turbo spider-sql --max_samples 25
[2024-03-26 19:44:39,836] [registry.py:257] Loading registry from /Users/shyamal/.virtualenvs/openai/lib/python3.11/site-packages/evals/registry/evals
[2024-03-26 19:44:43,623] [registry.py:257] Loading registry from /Users/shyamal/.evals/evals
[2024-03-26 19:44:43,635] [oaieval.py:189]  [1;35mRun started: 240327024443FACXGMKA [0m
[2024-03-26 19:44:43,663] [registry.py:257] Loading registry from /Users/shyamal/.virtualenvs/openai/lib/python3.11/site-packages/evals/registry/modelgraded
[2024-03-26 19:44:43,851] [registry.py:257] Loading registry from /Users/shyamal/.evals/modelgraded
[2024-03-26 19:44:43,853] [data.py:90] Fetching /Users/shyamal/.virtualenvs/openai/lib/python3.11/site-packages/evals/registry/data/sql/spider_sql.jsonl
[2024-03-26 19:44:43,878] [eval.py:36] Evaluating 25 samples
[2024-03-26 19:44:43,952] [eval.py:144] Running in threaded mode with 10 threads!
  0%|                                                    | 0/25 [00:00<?, ?it/s][2024-03-26 19:44:44,810] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:44,829] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:44,991] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:45,090] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:45,145] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:45,971] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:46,040] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:46,069] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:46,378] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:46,587] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:47,412] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
  4%|█▊                                          | 1/25 [00:03<01:23,  3.46s/it][2024-03-26 19:44:47,714] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
  8%|███▌                                        | 2/25 [00:03<00:36,  1.60s/it][2024-03-26 19:44:47,947] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 12%|█████▎                                      | 3/25 [00:03<00:21,  1.02it/s][2024-03-26 19:44:48,413] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:48,643] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 16%|███████                                     | 4/25 [00:04<00:18,  1.15it/s][2024-03-26 19:44:48,909] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 20%|████████▊                                   | 5/25 [00:04<00:12,  1.54it/s][2024-03-26 19:44:49,131] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:49,500] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:49,530] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 24%|██████████▌                                 | 6/25 [00:05<00:12,  1.56it/s][2024-03-26 19:44:49,962] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:49,964] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:49,967] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 28%|████████████▎                               | 7/25 [00:06<00:10,  1.73it/s][2024-03-26 19:44:50,577] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:50,602] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:50,634] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:50,862] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:51,503] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:51,608] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 40%|█████████████████▏                         | 10/25 [00:07<00:08,  1.79it/s][2024-03-26 19:44:51,801] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 44%|██████████████████▉                        | 11/25 [00:07<00:06,  2.09it/s][2024-03-26 19:44:51,856] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:51,969] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:52,227] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 52%|██████████████████████▎                    | 13/25 [00:08<00:04,  2.65it/s][2024-03-26 19:44:52,450] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:52,526] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:52,615] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 56%|████████████████████████                   | 14/25 [00:08<00:04,  2.64it/s][2024-03-26 19:44:52,625] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:52,777] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:53,653] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 60%|█████████████████████████▊                 | 15/25 [00:09<00:05,  1.87it/s][2024-03-26 19:44:53,670] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:54,028] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 68%|█████████████████████████████▏             | 17/25 [00:10<00:03,  2.54it/s][2024-03-26 19:44:54,388] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:54,396] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 72%|██████████████████████████████▉            | 18/25 [00:10<00:02,  2.58it/s][2024-03-26 19:44:54,529] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
[2024-03-26 19:44:54,585] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 76%|████████████████████████████████▋          | 19/25 [00:10<00:02,  2.94it/s][2024-03-26 19:44:54,980] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 80%|██████████████████████████████████▍        | 20/25 [00:11<00:01,  2.82it/s][2024-03-26 19:44:55,152] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 84%|████████████████████████████████████       | 21/25 [00:11<00:01,  3.27it/s][2024-03-26 19:44:56,420] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 88%|█████████████████████████████████████▊     | 22/25 [00:12<00:01,  1.75it/s][2024-03-26 19:44:56,984] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 92%|███████████████████████████████████████▌   | 23/25 [00:13<00:01,  1.76it/s][2024-03-26 19:44:57,370] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 96%|█████████████████████████████████████████▎ | 24/25 [00:13<00:00,  1.94it/s][2024-03-26 19:44:59,589] [_client.py:1026] HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
100%|███████████████████████████████████████████| 25/25 [00:15<00:00,  1.60it/s]
[2024-03-26 19:44:59,607] [record.py:360] Final report: {'counts/Correct': 20, 'counts/Incorrect': 5, 'score': 0.8}. Logged to /tmp/evallogs/240327024443FACXGMKA_gpt-3.5-turbo_spider-sql.jsonl
[2024-03-26 19:44:59,608] [oaieval.py:229] Final report:
[2024-03-26 19:44:59,608] [oaieval.py:231] counts/Correct: 20
[2024-03-26 19:44:59,608] [oaieval.py:231] counts/Incorrect: 5
[2024-03-26 19:44:59,608] [oaieval.py:231] score: 0.8
[2024-03-26 19:44:59,640] [record.py:349] Logged 75 rows of events to /tmp/evallogs/240327024443FACXGMKA_gpt-3.5-turbo_spider-sql.jsonl: insert_time=27.915ms

oaievalset 需要一个模型名称和一个 Eval 集名称,其有效选项在 evals/registry/eval_sets 下的 YAML 文件中指定。

查看 Eval 日志

Eval 日志位于 /tmp/evallogs,并且为每次 Eval 运行创建了不同的日志文件。

log_name = '240327024443FACXGMKA_gpt-3.5-turbo_spider-sql.jsonl' # "EDIT THIS" - copy from above
events = f"/tmp/evallogs/{log_name}"
display(pd.read_json(events, lines=True).head(5))
spec final_report run_id event_id sample_id type data created_by created_at
0 {'completion_fns': ['gpt-3.5-turbo'], 'eval_name': 'spider-sql.dev.v0', 'base_eval': 'spider-sql', 'split': 'dev', 'run_config': {'completion_fns': ['gpt-3.5-turbo'], 'eval_spec': {'cls': 'evals.elsuite.modelgraded.classify:ModelBasedClassify', 'registry_path': '/Users/shyamal/.virtualenvs/openai/lib/python3.11/site-packages/evals/registry', 'args': {'samples_jsonl': 'sql/spider_sql.jsonl', 'eval_type': 'cot_classify', 'modelgraded_spec': 'sql'}, 'key': 'spider-sql.dev.v0', 'group': 'sql'}, 'seed': 20220722, 'max_samples': 25, 'command': '/Users/shyamal/.virtualenvs/openai/bin/oaieval gpt-3.5-turbo spider-sql --max_samples 25', 'initial_settings': {'visible': False}}, 'created_by': '', 'run_id': '240327024443FACXGMKA', 'created_at': '2024-03-27 02:44:43.626043'} NaN NaN NaN NaN NaN NaN NaT
1 NaN {'counts/Correct': 20, 'counts/Incorrect': 5, 'score': 0.8} NaN NaN NaN NaN NaN NaT
2 NaN NaN 240327024443FACXGMKA 0.0 spider-sql.dev.88 sampling {'prompt': [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Table: players. Columns: player_id (number), first_name (text), last_name (text), hand (text), birth_date (time), country_code (text) Table: matches. Columns: best_of (number), draw_size (number), loser_age (number), loser_entry (text), loser_hand (text), loser_ht (number), loser_id (number), loser_ioc (text), loser_name (text), loser_rank (number), loser_rank_points (number), loser_seed (number), match_num (number), minutes (number), round (text), score (text), surface (text), tourney_date (time), tourney_id (text), tourney_level (text), tourney_name (text), winner_age (number), winner_entry (text), winner_hand (text), winner_ht (number), winner_id (number), winner_ioc (text), winner_name (text), winner_rank (number), winner_rank_points (number), winner_seed (number), year (number) Table: rankings. Columns: ranking_date (time), ranking (number), player_id (number), ranking_points (number), tours (number) Question: Find the average rank of winners in all matches. ', 'role': 'system'}], 'sampled': ['SELECT AVG(winner_rank) AS average_rank_of_winners FROM matches;']} 2024-03-27 02:44:44.821110+00:00
3 NaN NaN 240327024443FACXGMKA 1.0 spider-sql.dev.82 sampling {'prompt': [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Table: players. Columns: player_id (number), first_name (text), last_name (text), hand (text), birth_date (time), country_code (text) Table: matches. Columns: best_of (number), draw_size (number), loser_age (number), loser_entry (text), loser_hand (text), loser_ht (number), loser_id (number), loser_ioc (text), loser_name (text), loser_rank (number), loser_rank_points (number), loser_seed (number), match_num (number), minutes (number), round (text), score (text), surface (text), tourney_date (time), tourney_id (text), tourney_level (text), tourney_name (text), winner_age (number), winner_entry (text), winner_hand (text), winner_ht (number), winner_id (number), winner_ioc (text), winner_name (text), winner_rank (number), winner_rank_points (number), winner_seed (number), year (number) Table: rankings. Columns: ranking_date (time), ranking (number), player_id (number), ranking_points (number), tours (number) Question: Find the total number of matches. ', 'role': 'system'}], 'sampled': ['SELECT COUNT(*) AS total_matches FROM matches;']} 2024-03-27 02:44:44.831848+00:00
4 NaN NaN 240327024443FACXGMKA 2.0 spider-sql.dev.25 sampling {'prompt': [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Table: continents. Columns: ContId (number), Continent (text) Table: countries. Columns: CountryId (number), CountryName (text), Continent (number) Table: car_makers. Columns: Id (number), Maker (text), FullName (text), Country (text) Table: model_list. Columns: ModelId (number), Maker (number), Model (text) Table: car_names. Columns: MakeId (number), Model (text), Make (text) Table: cars_data. Columns: Id (number), MPG (text), Cylinders (number), Edispl (number), Horsepower (text), Weight (number), Accelerate (number), Year (number) Question: How many countries exist? ', 'role': 'system'}], 'sampled': ['SELECT COUNT(*) AS TotalCountries FROM countries;']} 2024-03-27 02:44:44.996647+00:00
# 处理 oaieval 生成的日志事件

with open(events, "r") as f:
    events_df = pd.read_json(f, lines=True)

此文件将包含评估的结构化日志。第一条条目提供了评估的详细规范,包括完成函数、评估名称、运行配置、创建者姓名、运行 ID 和创建时间戳。

display(events_df.iloc[0].spec)
{'completion_fns': ['gpt-3.5-turbo'],
 'eval_name': 'spider-sql.dev.v0',
 'base_eval': 'spider-sql',
 'split': 'dev',
 'run_config': {'completion_fns': ['gpt-3.5-turbo'],
  'eval_spec': {'cls': 'evals.elsuite.modelgraded.classify:ModelBasedClassify',
   'registry_path': '/Users/shyamal/.virtualenvs/openai/lib/python3.11/site-packages/evals/registry',
   'args': {'samples_jsonl': 'sql/spider_sql.jsonl',
    'eval_type': 'cot_classify',
    'modelgraded_spec': 'sql'},
   'key': 'spider-sql.dev.v0',
   'group': 'sql'},
  'seed': 20220722,
  'max_samples': 25,
  'command': '/Users/shyamal/.virtualenvs/openai/bin/oaieval gpt-3.5-turbo spider-sql --max_samples 25',
  'initial_settings': {'visible': False}},
 'created_by': '',
 'run_id': '240327024443FACXGMKA',
 'created_at': '2024-03-27 02:44:43.626043'}

我们还看一下提供评估最终报告的条目。

display(events_df.dropna(subset=['final_report']).iloc[0]['final_report'])
{'counts/Correct': 20, 'counts/Incorrect': 5, 'score': 0.8}

我们还可以查看提供特定样本(sample_id)、结果、事件类型和元数据的单个评估事件。

pd.set_option('display.max_colwidth', None)  # None 表示不截断
display(events_df.iloc[2][['run_id', 'event_id', 'sample_id', 'type', 'data', 'created_at']])
run_id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                240327024443FACXGMKA
event_id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.0
sample_id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                spider-sql.dev.88
type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              sampling
data          {'prompt': [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct.

Use only the following tables and columns: Table: players. Columns: player_id (number), first_name (text), last_name (text), hand (text), birth_date (time), country_code (text) Table: matches. Columns: best_of (number), draw_size (number), loser_age (number), loser_entry (text), loser_hand (text), loser_ht (number), loser_id (number), loser_ioc (text), loser_name (text), loser_rank (number), loser_rank_points (number), loser_seed (number), match_num (number), minutes (number), round (text), score (text), surface (text), tourney_date (time), tourney_id (text), tourney_level (text), tourney_name (text), winner_age (number), winner_entry (text), winner_hand (text), winner_ht (number), winner_id (number), winner_ioc (text), winner_name (text), winner_rank (number), winner_rank_points (number), winner_seed (number), year (number) Table: rankings. Columns: ranking_date (time), ranking (number), player_id (number), ranking_points (number), tours (number)

Question: Find the average rank of winners in all matches. ', 'role': 'system'}], 'sampled': ['SELECT AVG(winner_rank) AS average_rank_of_winners FROM matches;']} 2024-03-27 02:44:44.821110+00:00

# 检查样本
for i, row in events_df[events_df['type'] == 'sampling'].head(5).iterrows():
    data = pd.json_normalize(row['data'])
    print(f"Prompt: {data['prompt'].iloc[0]}")
    print(f"Sampled: {data['sampled'].iloc[0]}")
    print("-" * 10)
Prompt: [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct.

Use only the following tables and columns: Table: players. Columns: player_id (number), first_name (text), last_name (text), hand (text), birth_date (time), country_code (text) Table: matches. Columns: best_of (number), draw_size (number), loser_age (number), loser_entry (text), loser_hand (text), loser_ht (number), loser_id (number), loser_ioc (text), loser_name (text), loser_rank (number), loser_rank_points (number), loser_seed (number), match_num (number), minutes (number), round (text), score (text), surface (text), tourney_date (time), tourney_id (text), tourney_level (text), tourney_name (text), winner_age (number), winner_entry (text), winner_hand (text), winner_ht (number), winner_id (number), winner_ioc (text), winner_name (text), winner_rank (number), winner_rank_points (number), winner_seed (number), year (number) Table: rankings. Columns: ranking_date (time), ranking (number), player_id (number), ranking_points (number), tours (number)

Question: Find the average rank of winners in all matches. ', 'role': 'system'}] Sampled: ['SELECT AVG(winner_rank) AS average_rank_of_winners FROM matches;'] ---------- Prompt: [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Use only the following tables and columns: Table: players. Columns: player_id (number), first_name (text), last_name (text), hand (text), birth_date (time), country_code (text) Table: matches. Columns: best_of (number), draw_size (number), loser_age (number), loser_entry (text), loser_hand (text), loser_ht (number), loser_id (number), loser_ioc (text), loser_name (text), loser_rank (number), loser_rank_points (number), loser_seed (number), match_num (number), minutes (number), round (text), score (text), surface (text), tourney_date (time), tourney_id (text), tourney_level (text), tourney_name (text), winner_age (number), winner_entry (text), winner_hand (text), winner_ht (number), winner_id (number), winner_ioc (text), winner_name (text), winner_rank (number), winner_rank_points (number), winner_seed (number), year (number) Table: rankings. Columns: ranking_date (time), ranking (number), player_id (number), ranking_points (number), tours (number)

Question: Find the total number of matches. ', 'role': 'system'}] Sampled: ['SELECT COUNT(*) AS total_matches FROM matches;'] ---------- Prompt: [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Use only the following tables and columns: Table: continents. Columns: ContId (number), Continent (text) Table: countries. Columns: CountryId (number), CountryName (text), Continent (number) Table: car_makers. Columns: Id (number), Maker (text), FullName (text), Country (text) Table: model_list. Columns: ModelId (number), Maker (number), Model (text) Table: car_names. Columns: MakeId (number), Model (text), Make (text) Table: cars_data. Columns: Id (number), MPG (text), Cylinders (number), Edispl (number), Horsepower (text), Weight (number), Accelerate (number), Year (number)

Question: How many countries exist? ', 'role': 'system'}] Sampled: ['SELECT COUNT(*) AS TotalCountries FROM countries;'] ---------- Prompt: [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Use only the following tables and columns: Table: TV_Channel. Columns: id (text), series_name (text), Country (text), Language (text), Content (text), Pixel_aspect_ratio_PAR (text), Hight_definition_TV (text), Pay_per_view_PPV (text), Package_Option (text) Table: TV_series. Columns: id (number), Episode (text), Air_Date (text), Rating (text), Share (number), 18_49_Rating_Share (text), Viewers_m (text), Weekly_Rank (number), Channel (text) Table: Cartoon. Columns: id (number), Title (text), Directed_by (text), Written_by (text), Original_air_date (text), Production_code (number), Channel (text)

Question: What is the name and directors of all the cartoons that are ordered by air date? ', 'role': 'system'}] Sampled: ['SELECT Title, Directed_by FROM Cartoon ORDER BY Original_air_date;'] ---------- Prompt: [{'content': 'Answer the following question with syntactically correct SQLite SQL. Be creative but the SQL must be correct. Use only the following tables and columns: Table: stadium. Columns: Stadium_ID (number), Location (text), Name (text), Capacity (number), Highest (number), Lowest (number), Average (number) Table: singer. Columns: Singer_ID (number), Name (text), Country (text), Song_Name (text), Song_release_year (text), Age (number), Is_male (others) Table: concert. Columns: concert_ID (number), concert_Name (text), Theme (text), Stadium_ID (text), Year (text) Table: singer_in_concert. Columns: concert_ID (number), Singer_ID (text)

Question: Show the name and the release year of the song by the youngest singer. ', 'role': 'system'}] Sampled: ['sql SELECT s.Name, s.Song_release_year FROM singer s WHERE s.Age = (SELECT MIN(Age) FROM singer)'] ----------

让我们回顾一下失败的案例,以了解哪些测试未成功。

def pretty_print_text(prompt):
    # 定义节的标记
    markers = {
        "question": "[Question]:",
        "expert": "[Expert]:",
        "submission": "[Submission]:",
        "end": "[END DATA]"
    }

    # 提取标记之间的文本的函数
    def extract_text(start_marker, end_marker):
        start = prompt.find(start_marker) + len(start_marker)
        end = prompt.find(end_marker)
        text = prompt[start:end].strip()
        if start_marker == markers["question"]:
            text = text.split("\n\nQuestion:")[-1].strip() if "\n\nQuestion:" in text else text
        elif start_marker == markers["submission"]:
            text = text.replace("```sql", "").replace("```", "").strip()
        return text

    # 提取每个节的文本
    question_text = extract_text(markers["question"], markers["expert"])
    expert_text = extract_text(markers["expert"], markers["submission"])
    submission_text = extract_text(markers["submission"], markers["end"])

    # HTML 颜色代码和格式
    colors = {
        "question": '<span style="color: #0000FF;">QUESTION:<br>', 
        "expert": '<span style="color: #008000;">EXPECTED:<br>',  
        "submission": '<span style="color: #FFA500;">SUBMISSION:<br>' 
    }
    color_end = '</span>'

    # 显示每个节及其颜色
    from IPython.display import display, HTML
    display(HTML(f"{colors['question']}{question_text}{color_end}"))
    display(HTML(f"{colors['expert']}{expert_text}{color_end}"))
    display(HTML(f"{colors['submission']}{submission_text}{color_end}"))
# 检查指标,如果选择不正确,则仅打印提示、结果和预期结果
for i, row in events_df[events_df['type'] == 'metrics'].iterrows():
    if row['data']['choice'] == 'Incorrect':
        # 获取上一行的数据,其中包含提示和预期结果
        prev_row = events_df.iloc[i-1]
        prompt = prev_row['data']['prompt'][0]['content'] if 'prompt' in prev_row['data'] and len(prev_row['data']['prompt']) > 0 else "Prompt not available"
        expected_result = prev_row['data'].get('ideal', 'Expected result not provided')

        # 当前行的 'data' 列将是实际结果
        result = row['data'].get('result', 'Actual result not provided')

        pretty_print_text(prompt)
        print("-" * 40)

QUESTION:
How many countries have a republic as their form of government?

**

EXPECTED:
SELECT count() FROM country WHERE GovernmentForm = "Republic" *****

SUBMISSION:
SELECT COUNT(*) FROM country WHERE GovernmentForm LIKE '%Republic%'

**

----------------------------------------

QUESTION:
Return the document id, template id, and description for the document with the name Robbin CV.

**

EXPECTED:
SELECT document_id , template_id , Document_Description FROM Documents WHERE document_name = "Robbin CV" **

SUBMISSION:
SELECT Documents.Document_ID, Documents.Template_ID, Documents.Document_Description FROM Documents JOIN Templates ON Documents.Template_ID = Templates.Template_ID WHERE Documents.Document_Name = 'Robbin CV';

**

----------------------------------------

QUESTION:
Which professionals live in the state of Indiana or have done treatment on more than 2 treatments? List his or her id, last name and cell phone.

**

EXPECTED:
SELECT professional_id , last_name , cell_number FROM Professionals WHERE state = 'Indiana' UNION SELECT T1.professional_id , T1.last_name , T1.cell_number FROM Professionals AS T1 JOIN Treatments AS T2 ON T1.professional_id = T2.professional_id GROUP BY T1.professional_id HAVING count() > 2 *****

SUBMISSION:
SELECT professional_id, last_name, cell_number FROM Professionals WHERE state = 'Indiana' OR professional_id IN ( SELECT professional_id FROM Treatments GROUP BY professional_id HAVING COUNT() > 2 ); *****

----------------------------------------

QUESTION:
What is the continent name which Anguilla belongs to?

**

EXPECTED:
SELECT Continent FROM country WHERE Name = "Anguilla" **

SUBMISSION:
SELECT c.Continent FROM country c WHERE c.Code = 'AIA';

**

----------------------------------------

QUESTION:
How many airlines do we have?

**

EXPECTED:
SELECT count() FROM AIRLINES *****

SUBMISSION:
SELECT COUNT(DISTINCT Airline) AS TotalAirlines FROM airlines; **

----------------------------------------

回顾一些失败案例,我们发现:

结论

构建有效的 Evals 是 LLM 应用程序开发周期中的核心部分。OpenAI Evals 框架提供了开箱即用的核心 Eval 构建结构,并允许您为各种用例快速启动新测试。在本指南中,我们分步演示了如何创建 Eval、运行它以及分析结果。

本指南中的示例代表了一个直接的 Eval 用例。在继续探索此框架时,我们建议您为实际生产用例探索创建更复杂的模型评分 Evals。评估愉快!