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Overview

e Computer Vision meets Natural Language Processing
o Vision Transformers: Detection, Classification and Segmentation
o Semi- and Self-Supervised Learning: Vision-Language models
e Computer Vision meets Computer Graphics
o Differential Rendering and Analysis by Synthesis
o Neural Radiance Field, with applications to SLAM, AR/VR
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MEGVII LI
Breakthrough in NLP Language Model

e BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (2018)

e GPT-1: Improving Language Understanding by Generative Pre-Training
(2018)

e GPT-2: Language Models are Unsupervised Multitask Learners (2019)

e GPT-3: Language Models are Few-Shot Learners (2020)
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Breakthrough in NLP Language Model

e BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (2018)

e GPT-1: Improving Language Understanding by Generative Pre-Training
(2018)

e GPT-2: Language Models are Unsupervised Multitask Learners (2019)

e GPT-3: Language Models are Few-Shot Learners (2020)

Two Ingredients: Transformer + Self/Semi-SL



NLP vs. Computer Vision

e Natural Language is
o naturally tokenized
o 1D with tree hierarchy
o "Digital signal”
o prone to spelling errors
e \Visionis
o continuous: fuzzy spatial relationships, and
in scale space
o 2D (or 3D)
o "Analog signal": ISP problems, AWB/AE,
sensor noise etc.
o prone to occlusions
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NLP vs. Computer Vision

submitted

e Natural Language is s ™ gen
o naturally tokenized j;”s vere B}f“b%m
o 1D with tree hierarchy orf . Sonsfor  Republican
o "Digital signal" \,d> Lm,,_uf
o prone to spelling errors immigration gas
e \Visionis
o continuous: fuzzy spatial relationships, and in scale space
o 2D (or 3D)
o "Analog signal": ISP problems, AWB/AE, sensor noise etc.
o prone to occlusions

Use Image Patches
2D attention

Image Augmentations
Image Augmentations

If we can build tree structure out
of an image, we can reduce
Vision to NLP!



4 years to unleash the power of Siide courtesy of Hu
. Han (modified)
Vision Transformer

CNN+Transformer
Transformer Encoder for Detection
Lx 4_
e —
Reason I: General modeling
capability
: 20194 2021.1 Reason V:
Reason II: Complement convolution Scalability
— — e —
2017.06 201711 Reason Ill: Strong ~ Reason IV: Better connect 2021.6

modeling power vision and language
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DETR: End-to-End Object Detection with Transformers >

(2005.12872)

e Draws heavily from MultiBox (Scalable Object Detection using Deep Neural
Networks, CVPR'14)

Network | Loss

Image ——» CNN — Transformer — MultiBox ! {Bipartite Matching Loss
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Discussion: Pro's and Con's of DETR

e End-to-end training is often preferred
o Less tweaking, put gradient backpropagation at work
o Ease the GT definition burden for immediate steps

e Single Feature

o More compact representation
o Thanks to Transformer's QKV attention and mixed-scale representation

e No NMS
o Transformer serves as decoder: directly outputs a sequence
e Downside

o  Still relies on CNN for Image Prior
o  Slower to train



More Compact Representation thanks G oty O
to QKV

e Powerful due to adaptive computation

O “Convolution is exponentially inefficient!”

convolution layer Transformer layer t
MatMuI
channel #1 composability f SoftMax
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channel #1 MatMuI
channel #3 1 1
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Discussion: Pro's and Con's of DETR

e End-to-end training is often preferred

o Less tweaking, put gradient backpropagation at work
o Ease the GT definition burden for immediate steps

e Single Feature
o More compact representation
o Thanks to Transformer's QKV attention and mixed-scale representation

e No NMS

o Transformer serves as decoder: directly outputs a sequence

These are not exclusively for Transformer.
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YoloF: You Only Look One-level Feature (2103.09460)
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Assignment Problem: match GT boxes against predicted

e BML uses Hungarian method (non-differential) for assignment
e OTA: Optimal Transport Assignment for Object Detection (2103.14259)
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. . . . [EkEI[IBHm
E2E Object Detection with Fully Convolutional Networ

(2012.03544)

e CNN based End to End Detection

o One-to-One label-assignment
o 3D-max-filter for sharp-feature (suppress spatial blurriness caused by sliding window)

Input FPN Feature



4 years to unleash the power of Siide courtesy of Hu
. Han (modified)
Vision Transformer

Trfn:sforr Encoder VIT
Pure Transformer
for Classification

Reason I: General modeling

capability
. 20194 2021.1 Reason V:
Reason II: Complement convolution Scalability
2017.06 2017.11 Reason Ill: Strong ~ Reason IV: Better connect 2021.6

modeling power vision and language
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ViT: An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale (2010.11929)

Vision Transformer (ViT) Transformer Encoder

e Effort for

"conv-free" Bai [<— MLP \

Transformer Encoder

Eniaig” > (‘15 @5 @5 @:5 .

* Extra learnable

[class] embedding [ Linear Projection of Flattened Patches ]
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o o ——— 5 O O A
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings to the resulting sequence of vectors, and feed the patches to a standard
Transformer encoder. In order to perform classification, we use the standard approach of adding an
extra learnable “classification token” to the sequence. The illustration of the Transformer encoder
was inspired by [Vaswani et al.| (2017).




DeiT: Training data-efficient image transformers &
distillation through attention (2012.12877)

e Eliminate ViT's reliance on training on
ImageNet-21k / JFT300M

e Deil-B =ViT-B/16

e Raise accuracy by tweaking optimizer,
data augmentation and regularization.
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4 years to unleash the power of Siide courtesy of Hu
. Han (modified)
Vision Transformer

Transformer Encoder

Lx 4_
SWIN
A Transformer
Reason |: General modeling Backbone
capability
20194 20211 Reason V:
Reason II: Complement convolution Scalability
— — e —

2017.06 2017 .11 Reason Ill: Strong ~ Reason IV: Better connect 2021.6

modeling power vision and language



Swin Transformer: General Purpose

Backbone

COCO object detection
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Swin Transformer =

® Transformer

O Strong modeling power

® + good priors for visual
modeling

O Hierarchy
O Locality

O Translational invariance

16x

Patch/Feature bin

Computation scope
of self-attention

Slide courtesy of Hu

Han (modified)

16x

scgmentation
detection

1




Slide courtesy of Hu

H | erarc h y Han (modified)

e Processing objects of different
scales

gmentation
detection

16X

8%

4x

Patch/Feature bin -
Computation scope

Left figure credit by Ross of self-attention




Slide courtesy of Hu

Locality by non-overlapped windows Han (modified)

e Proves beneficial in modeling the high correlation in visual signals (Yann
LeCun)

e Linear complexity with increasing image resolution: from O(n?) to O(n)

ks 7 BT
16x less 5
computation BT
; : " ;\M =, ——
ViT: 2562=65536 (Global) Swin Transformer: 16x162=4096

1 - 1\



Slide courtesy of Hu

Locality by non-overlapped windows Han (modified)

® Compared to sliding window (LR-Net)

O Shared key set enables friendly memory access and is thus good for speed (larger than 3x)

the key set for q shared key set for q and q’
q
ql
the key set for
q’
sliding window Non-overlapped window (Swin

1D NI\ - \



Slide courtesy of Hu

Shifted non-overlapped windows Han (modified)

® Enable cross-window connection
O Non-overlapped windows will result in no connection between windows

O Performs as effective or even slightly better than the sliding window approach, due to
regularization effects

Layer | Layer 1+1

A local window to
perform self-attention

A 4

A Igfch




Slide courtesy of Hu

Translational semi-invariance Han (modified)

® Relative position bias plays a more important role in vision than in NLP

Attention(Q, K, V) = SoftMax(QK™ /v/d +|B)V,

Pseudo windows to induce
translation invariance

ViR
L

Fel | ] [ L]
2 L] L
I Lds
l I3 iq T
L __
Shared partial
windows

semi-invariance is as effective as full-invariance in our experiments
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Slide courtesy of Hu

SWIN: Architecture instantiations Han (modified)

® Resolution of each stage is set similar as ResNet, to facilitate application to
down-stream tasks
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Overview

e Computer Vision meets Natural Language Processing

o Vision Transformers: Detection, Classification and Segmentation

o Semi- and Self-Supervised Learning: Vision-Language models
e Computer Vision meets Computer Graphics

o Differential Rendering and Analysis by Synthesis

o Neural Radiance Field, with applications to SLAM, AR/VR
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"Training Trilogy": Self-SL + SL + Semi-SL

e Self-Supervised Learning
o Billion-scale dataset: JFT-300M, Instagram-940M
o Large models like ResNeXt

e Supervised-finetuning
e Semi-Supervised Learning



"Training Trilogy": Self-SL + SL + Semi-SL
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Figure 3: The proposed semi-supervised learning framework leverages unlabeled data in two ways:
(1) task-agnostic use in unsupervised pretraining, and (2) task-specific use in self-training / distillation.

SImCLR V2 '20



"Training Trilogy": Self-SL + SL + Semi-SL
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Figure 3: The proposed semi-supervised learning framework leverages unlabeled data in two ways:
(1) task-agnostic use in unsupervised pretraining, and (2) task-specific use in self-training / distillation.
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"Training Trilogy": Self-SL + SL + Semi-SL
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Figure 3: The proposed semi-supervised learning framework leverages unlabeled data in two ways:
(1) task-agnostic use in unsupervised pretraining, and (2) task-specific use in self-training / distillation.
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Low-Shot Learning with Imprinted Weights
(1712.07136)
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Figure 1. The overall architecture of imprinting. After a base clas-
sifier is trained, the embedding vectors of new low-shot examples
are used to imprint weights for new classes in the extended classi-

fier.
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B4
Self-SL by Auxiliary task: Inpainting e

e Context Encoders: Feature Learning by Inpainting '16

(a) Input context (b) Human artist (c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)
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Predictive Learning vs. Contrastive Learning

SimCLR
MoCo
BYOL

(a) Predictive learning

f91}3< fo,

(b) Contrastive learning




Bootstrap Your Own Latent: A New Approach to ZZ0% 2

Self-Supervised Learning (2006.07733)

e Free of Negative Samples
e Later works: having some differences between two branches is enough

view
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Figure 2: BYOL'’s architecture. BYOL minimizes a similarity loss between gy (z) and sg(z’), where @ are the trained
weights, £ are an exponential moving average of # and sg means stop-gradient. At the end of training, everything
but fp is discarded and y is used as the image representation.



Self-SL by Generative Prior: Pixel-by-pixel Image  [EAI¥#2
Reconstruction (Jun. 17, 2020)

e Image GPT

," 2 (a) Autoregressive (b) BERT 3 (a) Linear Probe
% * :
v o0 000000 o0 00000
———— —

00 0 0000 00 ¢ 0000 (b) Finetune
00000 o 0000O o

! ' . !
EEE B Al B = =

Target Target

Cat Dog

Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.



Self-SL by Generative Prior: Pixel-by-pixel Image  [EAI¥#2
Reconstruction

e Image GPT

CIFAR10
BERT - l
AR 1
: % % 97 % % 100
accuracy
ImageNet

BERT 1 .

54 S5 58 60 62 64 66 68
accuracy

Figure 4. Comparison of auto-regressive pre-training with BERT
pre-training using iGPT-L at an input resolution of 32% x 3. Blue
bars display linear probe accuracy and orange bars display fine-
tune accuracy. Bold colors show the performance boost from
ensembling BERT masks. We see that auto-regressive models
produce much better features than BERT models after pre-training,
but BERT models catch up after fine-tuning.




Vision Language Models

e CLIP and Wudao (multimodal)

o  Built on the common Transformer Architecture for NLP and CV
o Weaker supervision, but still supervised learning
e Applications
o Zero-shot Image Classification
o Textto Image

MEGVIILE
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Weakly supervised learning

e Labeling can be very expensive, weaker labels can help reduce cost

TR X
(a) image (b) mask annotation (c) scribble annotation
e Abundance of weak labels on Internet
o Instagram Hashtags

m #beautiful #fashion #art #photographer #bhfyp #likeforlikes #travel #instadaily
#photoshoot #smile #model #naturephotography ...



CLIP: Learning Transferable Visual Models From Nattrap ¥
Language Supervision (2103.00020)

(2) Create dataset classifier from label text

(1) Contrastive pre-training
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

target dataset’s classes.



CLIP: Learning Transferable Visual Models From Nattfap
Language Supervision (2103.00020)

e Itrocks

o can handle some misspellings with BPE from NLP
o knows trivias like Cartoon Character names e =

. . Chitanda Eru..

o Winry Rockbell

uuuuuuuuuuu

misspelled synapsids for synapsida




CLIP: Learning Transferable Visual Models From Nattfap
Language Supervision (2103.00020)

e But still

o can't count
o don't quite understand "not"

Result: Four eggs (0.29)

Image-Texst Match Scores

3




CLIP: Learning Transferable Visual Models From Nattfap
Language Supervision (2103.00020)
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WenLan: Bridging Vision and Language by Large-Sca

M

EGVIEEY
e

Multi-Modal Pre-Training (2103.06561)

e MoCo-style contrastive learning
e CNN-Transformer Encoder
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Figure 2. A schematic illustration of our BriVL model within the
cross-modal contrastive learning framework.
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Overview

e Computer Vision meets Natural Language Processing
o Vision Transformers: Detection, Classification and Segmentation
o Semi- and Self-Supervised Learning: Vision-Language models
e Computer Vision meets Computer Graphics
o Differential Rendering and Analysis by Synthesis
o Neural Radiance Field, with applications to SLAM, AR/VR
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Analyzing an Image: Image to Attributes MEGVII L

David Marr

Three levels of description (David Marr, 1982)

Computational maximize:

Why do things work the way they do? L s
Rr =l iR Vi

What is the goal of the computation? Ll 2 r

What are the unifying principles?

Algorthmic —]
What representations can implement

such computations? \ \
How does the choice of representations !
determine the algorithm? |

VISION

David Marr

Implementational —
How can such a system be built in

hardware?

How can neurons carry out the
computations?

2'7,-D sketch 3-D model

===
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How to be sure we have correct Image Analysis?
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How to be sure we have correct Image Analysis?

What | cannot create, | do not understand. -- Richard Feynman



a yellow bird with this bird is blue and a small bird with a red this small blue bird has

1=1 . In b d white wi black in color, with belly, and 11 bill ‘
Synthesizing an Image: e ronmiicrme e bl sndamalbil L i el
Text to Image -

AttggAN
MirrorGAN '19
But... A picture is ®
MirrorGAN
worth a thousand Baseline
words.
(©)
MirrorGAN
(d)

Ground Truth



Closing the loop: Computer Vision meets Computer
Graphics

e Analysis by Synthesis (a long standing idea)
The three R’s of computer vision: Recognition, reconstruction and reorganization

(2016)

Scene Parameters

Lights and Materials
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TensorFlow Graphics, 2019
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Analysis by Synthesis: 3D Object Recognition by Object

Reconstruction (CVPR ‘14)

Detection +
3D Reconstruction

Input Image

Figure 4. We search through a large collection of templates (with shared parts) by first caching part responses, and then looking up response
values to score each template.



Reparameterizing Discontinuous Integrands for
Differentiable Rendering (2019)

e Differentiable
approximation
of surface
displacement
and texture
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Overview

e Computer Vision meets Natural Language Processing
o Vision Transformers: Detection, Classification and Segmentation
o Semi- and Self-Supervised Learning: Vision-Language models
e Computer Vision meets Computer Graphics
o Differential Rendering and Analysis by Synthesis
o Neural Radiance Field, with applications to SLAM, AR/VR



MEGVII[gein
What makes NeRF?

e Coordinate NN

o anew compact representation of Tensor , allusive to non-linear PCA
e Volumetric Rendering

Input Coordinate

Value at
Coordinate



MEGVIILE

Principal Component Analysis and EigenFace

e PCA linearly factorizes data into linear combination of (a few) components
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NeRF: Neural Radiance Fields (2003.08934)

Rendering _
Dense Input Equation Scene Novel View
Representation Or memorized View
2 Soe BN @
PR . -
A\ ‘{ :
o
(a) Inference, scene memorization loop

(time intensive)
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Scene Representation in NeRF:
Coordinate MLP

. . I ordin:
e Inputs are just coordinates ~ mput Coordinate

(allusive to Positional
Encoding in Transformers)
(x, y): image

(X, y, Zz): occupancy

(X, Y, z, 0, ) ray-tracing

(X, Y, z, 6, ¢, t) spatial-temporal video

. ;
.
-
(90
..' Meta-Learned

.V Initialization

Standard
Initialization

.'gi
< o

Coordinate



Coordinate MLP

e Uses Fourier Features for modeling high-frequency details

§
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With Fourier features

(c) 3D shape regression  (d) MRI reconstruction (e) Inverse rendering

(z,y) — RGB (z,y,z) — occupancy (z,y,2z) — density  (z,y,z) — RGB, density



NeRF is simpler: MEGVII LY
Simplifying Rendering Equation using Ray Marching with
NN as SDF

;\
/ 2 /




Image MEGVI[En

Rav Traci Camera / Light Source
ay Tracing N 8
x | Q Shadow Rayv

7\

View Ray

a . Drawing by Monte Carlo
Ray Tracing, with lights
bouncing in the scene. Not
easy to get proper gradients.

b. How to represent BSDF and Scene ObleCt

make it differentiable?




Differentiable Monte Carlo Ray Tracing through Edgemmwm
Sampling (2018)

(a) initial guess (b) real photograph  (c) camera gradient (d) table albedo gradient (e) light gradient (f) our fitted result
(per-pixel contribution) (per-pixel contribution) (per-pixel contribution)

4

(a) area sampling (b) edge sampling
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Ray Marching (instead of Ray Tracing in NeRF)

http://jlamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

In raytracing, the scene is typically defined in terms of explicit geometry:
triangles, spheres, etc. To find the intersection between the view ray and the
scene, we do a series of geometric intersection tests

In raymarching, the entire scene is defined in terms of a signed distance
function. To find the intersection between the view ray and the scene, we start
at the camera, and move a point along the view ray, bit by bit, until the SDF

evaluate to a negative number. We hit something.
o Ifit's not, we keep going up to some maximum number of steps along the ray.


http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

MEGVIILE

NeRF is simpler: Volume Rendering, smoother




o
Faithfulness of rendering equation helps preserves MRS
identity!

e DR-GAN (1705.11136) vs. pi-GAN (2012.00926, NeRF-based)
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Applications of NeRF (with generalizations)

e 3D modeling from Real-world Imagings
o From a few Images: NeRS
o Dynamic Scenes: D-NeRF, Nerfies
o From Free-Viewpoint Video
e Image Synthesis
o 3D-aware synthesis: pi-GAN
o  From MineCraft world: GANcraft
e 3D models as Differentiable Volumetric Representation

o for SLAM: iMAP
o for Robotics



_ [@%\!I[IBHE!
NeRS: Neural Reflectance Surfaces for Sparse-View
Reconstruction in the Wild 2110.07604

e input: several (8-16) unposed images of the same instance
e output: a textured 3D reconstruction along with the illumination parameters.

Input Images  Target View NeRF* MetaNeRF  MetaNeRF-ft IDR NeRS (Ours)

o
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Dynamic Scene: D-NeRF

(x+AX,y+Ay,z+Az,6,0) »DDDD» (R,G,B,0)

M(v(x.y‘z.t)—»[IDDD—»(AX.A}!,AZ)

Deformed Scene Scene Canonical Space Scene Canonical Space

Figure 3: D-NeRF Model. The proposed architecture consists of two main blocks: a deformation network ¥; mapping all scene
deformations to a common canonical configuration; and a canonical network ¥, regressing volume density and view-dependent RGB
color from every camera ray.



Dynamic Scene: Nerfies

e Can handle Glassy and moving objects

latent 1p latent appearance code

deformation W
code ) view direction
» P - , >
- | B /f Iy »RGB o
= density o
defm:mation template
observation frame field canonical frame NeRF

Figure 2: We associate a latent deformation code (w) and an appearance code (1)) to each image. We trace the camera rays in
the observation frame and transform samples along the ray to the canonical frame using a deformation field encoded as an MLP
that is conditioned on the deformation code w. We query the template NeRF [“] using the transformed sample (z’, v/, '),
viewing direction (6, ¢) and appearance code ) as inputs to the MLP and integrate samples along the ray following NeRF.

W




Space-time Neural Irradiance Fields for Free-Viewpommwm
Video (2011.12950)

We make a simple assumption on unobserved spaces:
every part of the world should stay static unless observed
not as such. Enforcing this assumption prevents the part
of spaces that are not observed from going entirely uncon-
strained. Our static scene constraint encourages the shared
color and volume density at the same spatial location x be-
tween two distinct times ¢ and ¢':

Lowic= Y, |[F(x1)—Fx1)|5, 8)

(x,1)eX

from the input video. (Middle) Novel view images rendered from textured meshes constructed from depth maps. (Bottom) Our results
rendered from the proposed space-time neural irradiance field.
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Applications of NeRF (with generalizations)

e 3D modeling from Real-world Imagings
o From a few Images: NeRS
o Dynamic Scenes: D-NeRF, Nerfies
o From Free-Viewpoint Video
e Image Synthesis
o 3D-aware synthesis: pi-GAN
o  From MineCraft world: GANcraft
e 3D models as Differentiable Volumetric Representation

o for SLAM: iMAP
o for Robotics



o
GANcraft: Unsupervised 3D Neural Rendering of Min@%%]fﬂtmL
Worlds (2104.07659)

Image pixel features

GAN, VGG, L,, L, GAN

a

Style encoder

SPADE

Voxel world
feature per voxel corner

segmentation map pseudo-ground truth real image

Figure 3: Overview of GANcraft. Given an input voxel world with segmentation labels, we first assign features to every
voxel corner. For arbitrarily sampled camera viewpoints, we obtain the trilinearly interpolated voxel features at the point of
ray-voxel intersections, process with an MLP, and blend the output features to obtain the image pixel features. These features
are fed to an image-space CNN renderer. Both the MLP and the CNN are conditioned on the style code of the pseudo-ground
truth for the chosen camera view. Our method is trained with an adversarial loss with real images, and a combination of
adversarial, pixel-wise, and VGG perceptual losses on the pseudo-ground truths. After training, we can render the world in a
photorealistic manner, controlling the style of the output images by conditioning on an input style code or image.
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Applications of NeRF (with generalizations)

e 3D modeling from Real-world Imagings
o From a few Images: NeRS
o Dynamic Scenes: D-NeRF, Nerfies
o From Free-Viewpoint Video
e Image Synthesis
o 3D-aware synthesis: pi-GAN
o  From MineCraft world: GANcraft
e 3D models as Differentiable Volumetric Representation

o for SLAM: iMAP
o for Robotics



NeRF-GTO: Using a Neural Radiance Field to Graspmmwm
Transparent Objects (2021)

Dataset (e '
Generation {%8
NeRF
@ Training

Depthmap
Rendering

¥

Grasp
@ Planning Dex-Net

7 ‘ Grasp
=1 @ Execution

Flgure 1 Us1ng NeRF to grasp transparent objects leen a scene with transparent objects (left column),
we the pipeline on the right to compute grasps (middle column). The top row shows NeRF-GTO working in a
simulated scene while the bottom row shows it working in a physical scene.




Br-%#n
Vision-Only Robot Navigation in a Neural Radiance v@@n@ e

2110.00168

e collision penalty (based on
NeRF) is now soft
e control penalty for less jerky

control
" collision penalty control penalty
JW)=>"| D p(Rebi+67)s(bi)+ ulTu,
7=0 b,eB

Control Inputs
Real World or <€

Simulator

Camera Images %

State Estimate

5 »|  Trajectory
Estimator imi
—3 Optimizer
Density
14
: NeRF
Predicted Image Predicted State

Fig. 3. Block diagram of the proposed pipeline. Our method consists of a
trajectory optimizer and state estimator which use a NeRF representation of
the environment for planning and localization. At each timestep, the planner
optimizes a trajectory from the current mean state estimate which minimizes
a NeRF-based collision metric. The robot then applies the first control action
of this trajectory, and receives a noisy image from its onboard camera.
Finally, the state estimator, using the NeRF as a nonlinear measurement
model, uses this image to generate a posterior belief over the new state.
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Non-conclusive Conclusions, as of 20271Q3

e New Models like Transformers

o frees many CV tasks of bells and whistles
o creates a unified foundation for CV and NLP

e Large Models: large pre-trained Vision and Language models benefiting
downstream tasks
e Easier 3D: NeRF is expected to further simplify 3D Vision Infrastructure
o Easier 3D model acquisition

o [Easier Image Synthesizing
o Differential rendering is now accessible to everyone
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