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Why quantum computing?

● Can crack elliptic curve cryptography …
○ And threaten your Bitcoin



Why study quantum computing
… even when you don’t have a quantum computer

● Many fast classic algorithms can be traced to simulations of quantum algorithms.

Discrete Fourier 
Transform

Simulated Annealing Probabilistic 
checking

BPP

Quantum Fourier 
Transform

Quantum Annealing Deutsch’s algorithm BQP

You steal the joy of quantum computing!

We preempt the benefits of quantum computing!



Why study quantum computing
… even when you don’t have a quantum computer

“Quantum computing may be the key, to 
understanding Deep Learning.”     

                                             -- Andrew Yao, 2017



Quantum Mechanics
● Schrödinger's equation

● von Neumann's equation
○ Lax-pair, isospectral

Pure states (eigenvectors)



Bit to Qubit ("Q-bit")
● Bit: +1 / -1
● Qubit: 2DOF

○ Angles: theta / phi
○ Two complex numbers + norm constraint

■                              (superposition)
■  
■ |α|2 and |β|2 are probabilities

● Bra-ket notation
○ <x| for Bra, or row-vector, or transposed 

vector.
○ |x> for vector



Exponential number of bits for simulating Qubits
● N qubits need 2N classic bits
● (a |0> + b|1>)(c |0> + d|1>)

○ = ac |00> + ad |01> + bc |10> + bd |11>

● Entanglement: when (a, b; c, d) not rank 1
○ a |00> + b |01> + c |10> + d|11>



Superposition and Measurement



Quantum operations
● Reversible

○ Apply a unitary transform: all kinds of gates
■ Unconditional
■ Conditional

● Irreversible (Quantum decoherence)
○ “Create” a qubit
○ Measurement

Hadamard

Pauli-X

Pauli-Y

Phase Shift, pi / 4 for 
“pi-over-eight” gate

...

...



Modeling quantum operations with Haskell
● Reversible

○ Apply a unitary transform
■ Unconditional
■ Conditional

● Irreversible
○ “Create” a qubit
○ Measurement

-- | The underlying data type of a U unitary operation
data U = UReturn -- A List like construct

       | Rot Qbit Rotation U
       | Swap Qbit Qbit U 
       | Cond Qbit (Bool -> U) U 
       | Ulet Bool (Qbit -> U) U

Has side-effects, 
how to model?



Monad and the “multi-world”
● Monad is a representation for computation graph

○ Construct first, run later
■ Haskell put everything with side-effects in IO monad

● putStrLn :: String -> IO ()
○ “write : World -> Filename -> String -> World”

● type IO a  =  World -> (a, World)

World

IO a

New World

a

Run



Example: IO Monad
● (>>=) :: IO a -> (a -> IO b) -> IO b

(action1 >>= action2) world0 =
   let (a, world1) = action1 world0
       (b, world2) = action2 a world1
   in (b, world2)
○ “Bind” operation

● return :: a -> IO a
return a world0  =  (a, world0)



Example: State Monad
● newtype State s a = State { runState :: s -> (a, s) }
● return a = State $ \s -> (a, s)
● (>>=) :: State s a ->(a -> State s b) ->State s b

○ m >>= k = State $ \s -> let (a, s') = runState m s in runState (k a) s’



Example: “RNN monad”
● newtype Rnn s i a = Rnn { runRnn :: (i, s) -> (a, s) }
● return a = Rnn $ \(i, s) -> (a, s)
● (>>=) :: Rnn s i a -> (a -> Rnn s j b) -> Rnn s (i, j) b

○ m >>= k = Rnn $ \((i, j), s) -> let (a, s') = runRnn m (i, s) in runRnn (k a) (j, s’)



QIO Haskell package
● QIO models the “irreversible” part: decoherence of the qubits

○ Forming a monad

instance Monad QIO
  mkQbit :: Bool → QIO Qbit
  applyU :: U → QIO ()
  measQbit :: Qbit →QIO Bool

https://github.com/alexandersgreen/qio-haskell


QIO Monad can be simulated or sampled

● “run” for sampling
● “sim” for distributional representation

Prob :: ∗→∗
instance Monad Prob
  run :: QIO a → IO a
  sim :: QIO a → Prob a
  runC :: QIO a → a



Creating qubits
-- | Initialise a qubit in the |0> state
q0 :: QIO Qbit
q0 = mkQ False

-- | Initialise a qubit in the |1> state
q1 :: QIO Qbit
q1  =  mkQ True

-- | Initialise a qubit in the |+> state. This is done by applying a Hadamard gate to the |0> state.    
qPlus :: QIO Qbit
qPlus  =  do  qa <- q0
              applyU (uhad qa)
              return qa

-- | Initialise a qubit in the |-> state. This is done by applying a Hadamard gate to the |1> state.
qMinus :: QIO Qbit
qMinus  =  do  qa <- q1
               applyU (uhad qa)
               return qa

|0> |+>

|1> |->



Measuring and “sharing”
-- | Create a random Boolean value, by measuring the state |+> 
randBit :: QIO Bool
randBit  =  do  qa <- qPlus
                x <- measQbit qa
                return x

-- | This function can be used to "share" the state of one qubit, with another
-- newly initialised qubit. This is not the same as "cloning", as the two qubits
-- will be in an entangled state. "sharing" is achieved by simply initialising
-- a new qubit in state |0>, and then applying a controlled-not to that qubit, 
-- depending on the state of the given qubit.
share :: Qbit -> QIO Qbit
share  qa  =  do  qb <- q0
                  applyU (cond qa (\a -> if a then (unot qb)
                                              else (mempty)  )  )
                  return qb

|0>
|+> 0, p=0.5

1, p=0.5

qa qa

q0 qb’



Deutsch–Jozsa’s algorithm
● Given a balanced/constant boolean function (Bool^k -> Bool)

○ Do a 2-classification

● Exact solution on a Quantum computer requires 1 evaluation
○ Exact solution on a classic computer requires exponential many evaluations
○ … But if allowing bounded errors, require k answers to obtain 

const True const False \ x -> x \ x -> not x

1 1 0 0

https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm


Manual work out
Uf maps            to 

A custom quantum gate



Clash: Haskell for FPGA
● CλaSH http://www.clash-lang.org/

○ A Haskell spin-off

● Models wires as infinite stream, and sequential logic as State machines
○ counter  :: Signal (Unsigned 2)
○ counter = register 0 (liftA (+1) topEntity)

■ > sampleN 8 $ topEntity
■ [0,1,2,3,0,1,2,3]

● Dependent type for bit width (partial support)
○ Type checking for bit width checking

■ (++) :: Vec n a -> Vec m a -> Vec (n + m) a

http://www.clash-lang.org/


Clash: Haskell for FPGA

mac :: Int        -- Current state
    -> (Int,Int)  -- Input
    -> (Int,Int)  -- (Updated state, output)
mac s (x,y) = (s',s)
  where s' = x * y + s

topEntity :: Signal (Int, Int) -> Signal Int
topEntity = mealy mac 0

mealy :: (s -> i -> (s, o)) -> s -> Signal i -> Signal o

https://hackage.haskell.org/package/clash-prelude-0.11.2/docs/CLaSH-Signal.html#t:Signal
https://hackage.haskell.org/package/clash-prelude-0.11.2/docs/CLaSH-Signal.html#t:Signal
https://hackage.haskell.org/package/clash-prelude-0.11.2/docs/CLaSH-Prelude-Mealy.html#v:mealy


Clash/FPGA: implement Complex Number
type CC = Vec 2 RR

c0 = 0 :> 0 :> Nil
c1 = 1 :> 0 :> Nil

sqr_norm :: CC -> RR
sqr_norm (a :> b :> Nil) = a * a + b * b

cadd :: CC -> CC -> CC
cadd = zipWith (+)

cmul :: CC -> CC -> CC
cmul (a :> b :> Nil) (c :> d :> Nil) = (a * c - b * d) :> (a * d + b * c) :> 
Nil

dotProduct xs ys = foldr cadd c0 (zipWith cmul xs ys)
matrixVector m v = map (`dotProduct` v) m



Clash/FPGA: Qubit
type QBit = Vec 2 CC

q0 :: Signal QBit
q0 = register (c1 :> c0 :> Nil) q0

q1 :: Signal QBit
q1 = register (c0 :> c1 :> Nil) q1

qPlus = hadamardG q0
qMinus = hadamardG q1 

hadamard :: QBit -> QBit
hadamard = matrixVector ((h :> h :> Nil) :> (h :> (cneg h) :> Nil) :> Nil)
  where h = ($$(fLit (1 / sqrt 2)) :: RR) :> 0 :> Nil

hadamardG :: Signal QBit -> Signal QBit
hadamardG = register (repeat c0) . liftA hadamard

measure :: Signal QBit -> Signal RR
measure = register 0 . liftA (\ x ->  sqr_norm (x !! 1))



Multi-Qubit interaction
explode :: Signal QBit -> Signal QBit -> Signal (Vec 4 CC)

explode qx qy = register (repeat c0) $ liftA2 outer qx qy

  where 

    outer :: QBit -> QBit -> Vec 4 CC

    outer (x0 :> x1 :> Nil) y = (map (cmul x0) y) ++ (map (cmul x1) y)

measure0 :: Signal (Vec 4 CC) -> Signal RR

measure0 = register 0 . liftA (\ x -> sqr_norm (x !! 0) + sqr_norm (x !! 1))

From (a|0> + b|1>) (c|0> d|1>) to
ac |00> + ad |01> + bc |10> + bd |11>

Measures ||00>|2 + ||01>|2



Deutsch-Jozsa’s 
algorithm

deutsch_u :: Vec 2 RR -> Vec 4 CC -> Vec 4 CC
deutsch_u (f0 :> f1 :> Nil) =
  matrixVector (make_complex (
                (( 1 - f0) :> f1 :> 0 :> 0 :> Nil) :> 
                (f0 :> (1 - f1) :> 0 :> 0 :> Nil) :>
                ( 0 :> 0 :> (1 - f0) :> f1 :> Nil) :>
                ( 0 :> 0 :> f0 :> (1 - f1) :> Nil) :> Nil))

hadamard_I :: Vec 4 CC -> Vec 4 CC
hadamard_I =
  matrixVector (make_complex (
                (h :> 0 :> h :> 0 :> Nil) :> 
                ( 0 :> h :> 0 :> h :> Nil) :>
                (h :> 0 :> - h :> 0 :> Nil) :>
                ( 0 :> h :> 0 :> - h :> Nil) :> Nil))
  where h = $$(fLit (1 / sqrt 2)) :: RR

I



Deutsch-Jozsa’s 
algorithm

deutsch :: Vec 2 RR -> Signal RR
deutsch f0f1 =
  let xy = explode qPlus qMinus in
  let xy2 = register (repeat c0) $ liftA (deutsch_u f0f1) xy in
  let xy3 = register (repeat c0) $ liftA hadamard_I xy2 in
  measure0 xy3

topEntity :: Signal (Vec 4 RR)
topEntity = bundle (map deutsch (f0 :> f1 :> f2 :> f3 :> Nil))
  where f0 = 0 :> 0 :> Nil
        f1 = 1 :> 1 :> Nil
        f2 = 0 :> 1 :> Nil
        f3 = 1 :> 0 :> Nil
sampleN 8 $ topEntity
[<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>
,<0.999847412109375,0.999847412109375,0.0,0.0>,<0.999847412109375,0.999847412109375,0.0,0.
0>,<0.999847412109375,0.999847412109375,0.0,0.0>]



Synthesizing on FPGA
yosys> show 
Deutsch_explode

Problem: no 
usage of ALU, 
very resource 
intensive.



Future work
● Try more Quantum Computing algorithms
● Do the matrix multiplications in multiple cycles



FPGA 
engineer

Congratulation for becoming one of the rarest 
species!

Quantum 
Computing

Haskell 
programmer

You

Monad is a monoid...

Where is my logic analyzer?

To measure, or not measure?

Ross Freeman

Simon Peyton Jones



Backup after this slide



Quantum Computing
● Qubit
● Inherently reversible

○ Quantum coherence exploits entanglement

● Quantum Decoherence
● Introduction to Quantum Information

https://docs.google.com/presentation/d/1FtbZY9Y_4_RyIA6f6EXjn4LmkX0zpMUeKhq7SaVe9CE/edit#slide=id.g1acf103c09_0_19


Schmidt decomposition (yet another SVD)
● vector w in tensor product space 

H_1 \otimes H_2
● separable state
● entangled state
● Schmidt rank
● Schmidt decomposition
● Partial trace
● von Neumann entropy

● matrix w with first dimension being 
H_1 and second being H_2

● rank 1 matrix
● rank(w) > 1
● rank
● SVD: w = U S V^T
● S^2
● entropy of square of singular 

values

Quantum Physics Linear Aglebra



A Finite Input Response Filter in Clash


