
Quantum Computing with
Haskell

and FPGA simulation
shuchang.zhou@gmail.com

Jan. 18, 2018

mailto:shuchang.zhou@gmail.com

Why quantum computing?

● Can crack elliptic curve cryptography …
○ And threaten your Bitcoin

Why study quantum computing
… even when you don’t have a quantum computer

● Many fast classic algorithms can be traced to simulations of quantum algorithms.

Discrete Fourier
Transform

Simulated Annealing Probabilistic
checking

BPP

Quantum Fourier
Transform

Quantum Annealing Deutsch’s algorithm BQP

You steal the joy of quantum computing!

We preempt the benefits of quantum computing!

Why study quantum computing
… even when you don’t have a quantum computer

“Quantum computing may be the key, to
understanding Deep Learning.”

 -- Andrew Yao, 2017

Quantum Mechanics
● Schrödinger's equation

● von Neumann's equation
○ Lax-pair, isospectral

Pure states (eigenvectors)

Bit to Qubit ("Q-bit")
● Bit: +1 / -1
● Qubit: 2DOF

○ Angles: theta / phi
○ Two complex numbers + norm constraint

■ (superposition)
■
■ |α|2 and |β|2 are probabilities

● Bra-ket notation
○ <x| for Bra, or row-vector, or transposed

vector.
○ |x> for vector

Exponential number of bits for simulating Qubits
● N qubits need 2N classic bits
● (a |0> + b|1>)(c |0> + d|1>)

○ = ac |00> + ad |01> + bc |10> + bd |11>

● Entanglement: when (a, b; c, d) not rank 1
○ a |00> + b |01> + c |10> + d|11>

Superposition and Measurement

Quantum operations
● Reversible

○ Apply a unitary transform: all kinds of gates
■ Unconditional
■ Conditional

● Irreversible (Quantum decoherence)
○ “Create” a qubit
○ Measurement

Hadamard

Pauli-X

Pauli-Y

Phase Shift, pi / 4 for
“pi-over-eight” gate

...

...

Modeling quantum operations with Haskell
● Reversible

○ Apply a unitary transform
■ Unconditional
■ Conditional

● Irreversible
○ “Create” a qubit
○ Measurement

-- | The underlying data type of a U unitary operation
data U = UReturn -- A List like construct

 | Rot Qbit Rotation U
 | Swap Qbit Qbit U
 | Cond Qbit (Bool -> U) U
 | Ulet Bool (Qbit -> U) U

Has side-effects,
how to model?

Monad and the “multi-world”
● Monad is a representation for computation graph

○ Construct first, run later
■ Haskell put everything with side-effects in IO monad

● putStrLn :: String -> IO ()
○ “write : World -> Filename -> String -> World”

● type IO a = World -> (a, World)

World

IO a

New World

a

Run

Example: IO Monad
● (>>=) :: IO a -> (a -> IO b) -> IO b

(action1 >>= action2) world0 =
 let (a, world1) = action1 world0
 (b, world2) = action2 a world1
 in (b, world2)
○ “Bind” operation

● return :: a -> IO a
return a world0 = (a, world0)

Example: State Monad
● newtype State s a = State { runState :: s -> (a, s) }
● return a = State $ \s -> (a, s)
● (>>=) :: State s a ->(a -> State s b) ->State s b

○ m >>= k = State $ \s -> let (a, s') = runState m s in runState (k a) s’

Example: “RNN monad”
● newtype Rnn s i a = Rnn { runRnn :: (i, s) -> (a, s) }
● return a = Rnn $ \(i, s) -> (a, s)
● (>>=) :: Rnn s i a -> (a -> Rnn s j b) -> Rnn s (i, j) b

○ m >>= k = Rnn $ \((i, j), s) -> let (a, s') = runRnn m (i, s) in runRnn (k a) (j, s’)

QIO Haskell package
● QIO models the “irreversible” part: decoherence of the qubits

○ Forming a monad

instance Monad QIO
 mkQbit :: Bool → QIO Qbit
 applyU :: U → QIO ()
 measQbit :: Qbit →QIO Bool

https://github.com/alexandersgreen/qio-haskell

QIO Monad can be simulated or sampled

● “run” for sampling
● “sim” for distributional representation

Prob :: ∗→∗
instance Monad Prob
 run :: QIO a → IO a
 sim :: QIO a → Prob a
 runC :: QIO a → a

Creating qubits
-- | Initialise a qubit in the |0> state
q0 :: QIO Qbit
q0 = mkQ False

-- | Initialise a qubit in the |1> state
q1 :: QIO Qbit
q1 = mkQ True

-- | Initialise a qubit in the |+> state. This is done by applying a Hadamard gate to the |0> state.
qPlus :: QIO Qbit
qPlus = do qa <- q0
 applyU (uhad qa)
 return qa

-- | Initialise a qubit in the |-> state. This is done by applying a Hadamard gate to the |1> state.
qMinus :: QIO Qbit
qMinus = do qa <- q1
 applyU (uhad qa)
 return qa

|0> |+>

|1> |->

Measuring and “sharing”
-- | Create a random Boolean value, by measuring the state |+>
randBit :: QIO Bool
randBit = do qa <- qPlus
 x <- measQbit qa
 return x

-- | This function can be used to "share" the state of one qubit, with another
-- newly initialised qubit. This is not the same as "cloning", as the two qubits
-- will be in an entangled state. "sharing" is achieved by simply initialising
-- a new qubit in state |0>, and then applying a controlled-not to that qubit,
-- depending on the state of the given qubit.
share :: Qbit -> QIO Qbit
share qa = do qb <- q0
 applyU (cond qa (\a -> if a then (unot qb)
 else (mempty)))
 return qb

|0>
|+> 0, p=0.5

1, p=0.5

qa qa

q0 qb’

Deutsch–Jozsa’s algorithm
● Given a balanced/constant boolean function (Bool^k -> Bool)

○ Do a 2-classification

● Exact solution on a Quantum computer requires 1 evaluation
○ Exact solution on a classic computer requires exponential many evaluations
○ … But if allowing bounded errors, require k answers to obtain

const True const False \ x -> x \ x -> not x

1 1 0 0

https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm

Manual work out
Uf maps to

A custom quantum gate

Clash: Haskell for FPGA
● CλaSH http://www.clash-lang.org/

○ A Haskell spin-off

● Models wires as infinite stream, and sequential logic as State machines
○ counter :: Signal (Unsigned 2)
○ counter = register 0 (liftA (+1) topEntity)

■ > sampleN 8 $ topEntity
■ [0,1,2,3,0,1,2,3]

● Dependent type for bit width (partial support)
○ Type checking for bit width checking

■ (++) :: Vec n a -> Vec m a -> Vec (n + m) a

http://www.clash-lang.org/

Clash: Haskell for FPGA

mac :: Int -- Current state
 -> (Int,Int) -- Input
 -> (Int,Int) -- (Updated state, output)
mac s (x,y) = (s',s)
 where s' = x * y + s

topEntity :: Signal (Int, Int) -> Signal Int
topEntity = mealy mac 0

mealy :: (s -> i -> (s, o)) -> s -> Signal i -> Signal o

https://hackage.haskell.org/package/clash-prelude-0.11.2/docs/CLaSH-Signal.html#t:Signal
https://hackage.haskell.org/package/clash-prelude-0.11.2/docs/CLaSH-Signal.html#t:Signal
https://hackage.haskell.org/package/clash-prelude-0.11.2/docs/CLaSH-Prelude-Mealy.html#v:mealy

Clash/FPGA: implement Complex Number
type CC = Vec 2 RR

c0 = 0 :> 0 :> Nil
c1 = 1 :> 0 :> Nil

sqr_norm :: CC -> RR
sqr_norm (a :> b :> Nil) = a * a + b * b

cadd :: CC -> CC -> CC
cadd = zipWith (+)

cmul :: CC -> CC -> CC
cmul (a :> b :> Nil) (c :> d :> Nil) = (a * c - b * d) :> (a * d + b * c) :>
Nil

dotProduct xs ys = foldr cadd c0 (zipWith cmul xs ys)
matrixVector m v = map (`dotProduct` v) m

Clash/FPGA: Qubit
type QBit = Vec 2 CC

q0 :: Signal QBit
q0 = register (c1 :> c0 :> Nil) q0

q1 :: Signal QBit
q1 = register (c0 :> c1 :> Nil) q1

qPlus = hadamardG q0
qMinus = hadamardG q1

hadamard :: QBit -> QBit
hadamard = matrixVector ((h :> h :> Nil) :> (h :> (cneg h) :> Nil) :> Nil)
 where h = ($$(fLit (1 / sqrt 2)) :: RR) :> 0 :> Nil

hadamardG :: Signal QBit -> Signal QBit
hadamardG = register (repeat c0) . liftA hadamard

measure :: Signal QBit -> Signal RR
measure = register 0 . liftA (\ x -> sqr_norm (x !! 1))

Multi-Qubit interaction
explode :: Signal QBit -> Signal QBit -> Signal (Vec 4 CC)

explode qx qy = register (repeat c0) $ liftA2 outer qx qy

 where

 outer :: QBit -> QBit -> Vec 4 CC

 outer (x0 :> x1 :> Nil) y = (map (cmul x0) y) ++ (map (cmul x1) y)

measure0 :: Signal (Vec 4 CC) -> Signal RR

measure0 = register 0 . liftA (\ x -> sqr_norm (x !! 0) + sqr_norm (x !! 1))

From (a|0> + b|1>) (c|0> d|1>) to
ac |00> + ad |01> + bc |10> + bd |11>

Measures ||00>|2 + ||01>|2

Deutsch-Jozsa’s
algorithm

deutsch_u :: Vec 2 RR -> Vec 4 CC -> Vec 4 CC
deutsch_u (f0 :> f1 :> Nil) =
 matrixVector (make_complex (
 ((1 - f0) :> f1 :> 0 :> 0 :> Nil) :>
 (f0 :> (1 - f1) :> 0 :> 0 :> Nil) :>
 (0 :> 0 :> (1 - f0) :> f1 :> Nil) :>
 (0 :> 0 :> f0 :> (1 - f1) :> Nil) :> Nil))

hadamard_I :: Vec 4 CC -> Vec 4 CC
hadamard_I =
 matrixVector (make_complex (
 (h :> 0 :> h :> 0 :> Nil) :>
 (0 :> h :> 0 :> h :> Nil) :>
 (h :> 0 :> - h :> 0 :> Nil) :>
 (0 :> h :> 0 :> - h :> Nil) :> Nil))
 where h = $$(fLit (1 / sqrt 2)) :: RR

I

Deutsch-Jozsa’s
algorithm

deutsch :: Vec 2 RR -> Signal RR
deutsch f0f1 =
 let xy = explode qPlus qMinus in
 let xy2 = register (repeat c0) $ liftA (deutsch_u f0f1) xy in
 let xy3 = register (repeat c0) $ liftA hadamard_I xy2 in
 measure0 xy3

topEntity :: Signal (Vec 4 RR)
topEntity = bundle (map deutsch (f0 :> f1 :> f2 :> f3 :> Nil))
 where f0 = 0 :> 0 :> Nil
 f1 = 1 :> 1 :> Nil
 f2 = 0 :> 1 :> Nil
 f3 = 1 :> 0 :> Nil
sampleN 8 $ topEntity
[<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>
,<0.999847412109375,0.999847412109375,0.0,0.0>,<0.999847412109375,0.999847412109375,0.0,0.
0>,<0.999847412109375,0.999847412109375,0.0,0.0>]

Synthesizing on FPGA
yosys> show
Deutsch_explode

Problem: no
usage of ALU,
very resource
intensive.

Future work
● Try more Quantum Computing algorithms
● Do the matrix multiplications in multiple cycles

FPGA
engineer

Congratulation for becoming one of the rarest
species!

Quantum
Computing

Haskell
programmer

You

Monad is a monoid...

Where is my logic analyzer?

To measure, or not measure?

Ross Freeman

Simon Peyton Jones

Backup after this slide

Quantum Computing
● Qubit
● Inherently reversible

○ Quantum coherence exploits entanglement

● Quantum Decoherence
● Introduction to Quantum Information

https://docs.google.com/presentation/d/1FtbZY9Y_4_RyIA6f6EXjn4LmkX0zpMUeKhq7SaVe9CE/edit#slide=id.g1acf103c09_0_19

Schmidt decomposition (yet another SVD)
● vector w in tensor product space

H_1 \otimes H_2
● separable state
● entangled state
● Schmidt rank
● Schmidt decomposition
● Partial trace
● von Neumann entropy

● matrix w with first dimension being
H_1 and second being H_2

● rank 1 matrix
● rank(w) > 1
● rank
● SVD: w = U S V^T
● S^2
● entropy of square of singular

values

Quantum Physics Linear Aglebra

A Finite Input Response Filter in Clash

