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Tradeoff between Accuracy and Speed

e Breakthroughs improve

both accuracy and speed
Factorized Convolution
(GoogleNet)

Skip connection (ResNet)
Fully Convolutional Network
Batch Normalization

Cyclic Learning Rate

NAS

Transfer Learning in NLP
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User cases: Deep Learning
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Computer Architecture answer to Deep Learning
Challenge

e Make it start: Conceptual Breakthrough

o GPU: flexible powerhouse

e Make it work: Building product

o ISA & Programming models: Graph Compiler and Execution Engine

e Make it cheap: Democratize
o ASIC, Edge Computing, Cloud computing: mass production of all-in-one chips
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Computation Stack
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Verilog Architecture Operating System Compiler Computation Graph
e  Partitioning & e Karnaughmap e [SA e Page table e Parallelism Engine
Planning e Finite State e Micro-code e File system mining e Kernels
e Place & Route Machine e Resource e Interrupts e Memory latency e  Execution Plan

e Timing Closure allocation hiding
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Computation Stack
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Silicon Verilog Architecture Operating System Compiler Computation Graph

e  Partitioning & e Karnaughmap e [SA e Page table e Parallelism Engine

Planning e Finite State e Micro-code e File system mining e Kernels
e Place & Route Machine e Resource e Interrupts e Memorylatency e  Execution Plan
e Timing Closure allocation hiding

How will this stack deal with changes?
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Case study: Large Neural Networks

Characteristics: many channels + side-branches + many layers

AlexNet

GoogLeNet
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Case study: Large Neural Networks

e Instructions for Static analysis +
On-Chip-Memory convolutions & dynamic profiling
: non-linearity for kernel
for caching _
feature maps e SystolicArray Large page-table  Auto-SIMD selection +
execution plan
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Silicon Verilog Architecture Operating System Compiler Computation Graph
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Case study: Small Neural Networks

Characteristics: few channels + 1x1 convolutions

‘ =] | Lack of shortcut hurts its transfer
MobileNet l }D learning ability.
[]
The shuffle operation is an efficient
ShuffleNet way of information mixing, but its

uniqueness slows its adoption.

<—Channels———>
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Case study: Small Neural Networks

e Specialized support

Fusion of layers
for few channel y

: e Lower overhead

On-anp-Memory layers and 1x1 e  Non-batch perf :er;ﬁgfjscrafted
may be more convolutions. e P N

- age colorin Auto-SIMD

important. e Different batching J J
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Pipeline approach

e \With DL, Need to deal
with batch data to
improve computation /
memory ratio




Instruction Size vs. Feature Size

e Composition of Instruction
o Type: conv, concat, unpool, stride
o Weights
e Feature /Weight=N*H*W /(K* Kh * Kw)
o Feature=N*C*H*W
o Weight=K*C * Kh * Kw
o Getting smaller when later in
Detection/Recognition NN Input Image

. o ] Channel
o Relatively stable in image generation NN

e Efficiency suffers from low feature / weight ratio when .
) Convolution Kernel
small batch size
v\D‘epth
Kernel
Size
Kernel

Size
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When a Neural Network Designers, a Computer
Architect, a Compiler Expert and an OS Guru meet

e Designer wants
o Areliable performance model
m  Open architecture design and assembly/microcode level exposure
o Better profilers for runtime diagnostics and analyzers
o  Support for sparse matrices, dynamic operations

e Architect wants
o Batch operations with constant delays
o Regular memory access pattern subject to locality and many reuses
o Streamlined memory/computation usage, no overwhelming peaks
o Less number of operators

e Compiler Expert and OS Guru wants

o To broker between the Designer and the Architect
m Have a slow fallback for bizarre operators
m Cutting peaks



MEGVII|I g

Coevolution

eural Network Designer

We train our DL models
and design our networks!

Al-product Programmers

Computer Architects

We build our Al-products! From
Javascript to Linux Kernels!

We design our processors and
computers, from ISA to PCB!

S-platform A-firmware
Edge-computing Edge Device
platform Firmware
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Neural Network Designer

Channel
Shuffle

1Ll
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DoReFa-net ShuffleNet
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Example: self-adjustable global channel quota

e k samples from n without replacement
o follows multinomial hypergeometric distribution
o satisfies EX i=p_i
e SVHN-cropped:
o channel distribution
m base: 3 96, 128, 128, 256 | 512, 10; train 19/sec, misclassify 0.027
m self-adjusted: 3, 17, 26, 100 | 409, 10; train 62/sec, misclassify 0.031
e 50% less #channel
m self-adjusted: 4, 23, 51, 191 | 512, 10; train 41/sec, misclassify 0.028

o 30% less #channel
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Computer Architect

"X Compiler":. Optimizing & Autopar Compiler

___parallel.py—» cmds-o-par.json
/opt.py—> cmds-0.json
front_end.py—» cmds.json \

net \ . checker2+sim2
» checker+sim
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Pipeline Scheduling

CPU-proc1

CPU NPU
/ S . A
NN2
NN-Complex1 A 7
NN3 F---s &
--p CPU-proc2 Fr----- NN-Complex2 NN4
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Single Neural Network: Semi-Static Scheduling

e Neural Networks are almost static
o No branching
o (almost always) Fixed length data: fixed input/output/intermediate size
o Regular computation
e But there are "clouds"
o DDR latency / bandwidth
o Cache

e Dynamic Scheduling inevitable?
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Multiple Neural Network: Semi-Static Scheduling

e Combo-NN

o Multiple NN's may be triggered by the same chunk of input data

o Though logically separate, can be "linked" together

o Ad-hoc on-the-fly combo by JIT

Object 1
Compiled NN1

Object 2
Compiled NN2

Linked objects
Combo of NN1, NN2

loader

Loaded objects
Memory Addr patched
Ready to run
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Dyanmic Scheduling

Complex memory state

(@)

@)

@)

DDR

GPU

image

Device-Memory

—>

Can Scheduling ensure OOM-free?
m Interval analysis

Ensure proper recycling of resources when preemption

Exception mechanism

m Spilling data to DDR when below watermark

m May still not be safe

Complex running time

(@)

(@)

Interrupts to CPU
Unbounded running time: Disk-level access

image_d

EU
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Scheduling Overview

Dynamic Scheduling +
Exception
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Al-product Programmers

S-platform: Edge-computing platform  A-firmware: Edge Device Firmware

Full FPS Camera 1 Camera 2
Frame 1 Frame 2 Frame 3 !
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Backup after this slide
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Deep Learning Challenge

e Make it start: Conceptual Breakthrough

e Make it work: Building product

e Make it cheap: Democratize
https://medium.com/global-silicon-valley/the-evolution-of-mobile-computing-d273f23eda6 1
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User cases: Reinforcement Learning

Characteristics: require fast & complex simulations

A human skeleton model for

OpenSim locomotive task modeling.

Simulation for self-driving
car/ADAS and Drones.

GTAS5
AirSim




